Two Unrelated 8-Vinyl Reductases Ensure Production of Mature Chlorophylls in Acaryochloris marina
نویسندگان
چکیده
UNLABELLED The major photopigment of the cyanobacterium Acaryochloris marina is chlorophyll d, while its direct biosynthetic precursor, chlorophyll a, is also present in the cell. These pigments, along with the majority of chlorophylls utilized by oxygenic phototrophs, carry an ethyl group at the C-8 position of the molecule, having undergone reduction of a vinyl group during biosynthesis. Two unrelated classes of 8-vinyl reductase involved in the biosynthesis of chlorophylls are known to exist, BciA and BciB. The genome of Acaryochloris marina contains open reading frames (ORFs) encoding proteins displaying high sequence similarity to BciA or BciB, although they are annotated as genes involved in transcriptional control (nmrA) and methanogenesis (frhB), respectively. These genes were introduced into an 8-vinyl chlorophyll a-producing ΔbciB strain of Synechocystis sp. strain PCC 6803, and both were shown to restore synthesis of the pigment with an ethyl group at C-8, demonstrating their activities as 8-vinyl reductases. We propose that nmrA and frhB be reassigned as bciA and bciB, respectively; transcript and proteomic analysis of Acaryochloris marina reveal that both bciA and bciB are expressed and their encoded proteins are present in the cell, possibly in order to ensure that all synthesized chlorophyll pigment carries an ethyl group at C-8. Potential reasons for the presence of two 8-vinyl reductases in this strain, which is unique for cyanobacteria, are discussed. IMPORTANCE The cyanobacterium Acaryochloris marina is the best-studied phototrophic organism that uses chlorophyll d for photosynthesis. Unique among cyanobacteria sequenced to date, its genome contains ORFs encoding two unrelated enzymes that catalyze the reduction of the C-8 vinyl group of a precursor molecule to an ethyl group. Carrying a reduced C-8 group may be of particular importance to organisms containing chlorophyll d Plant genomes also contain orthologs of both of these genes; thus, the bacterial progenitor of the chloroplast may also have contained both bciA and bciB.
منابع مشابه
Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls.
Water oxidation by photosystem (PS) II in oxygenic photosynthetic organisms is a major source of energy on the earth, leading to the production of a stable reductant. Mechanisms generating a high oxidation potential for water oxidation have been a major focus of photosynthesis research. This potential has not been estimated directly but has been measured by the redox potential of the primary el...
متن کاملA Tale of Two Reductases: Extending the Bacteriochlorophyll Biosynthetic Pathway in E. coli
The creation of a synthetic microbe that can harvest energy from sunlight to drive its metabolic processes is an attractive approach to the economically viable biosynthetic production of target compounds. Our aim is to design and engineer a genetically tractable non-photosynthetic microbe to produce light-harvesting molecules. Previously we created a modular, multienzyme system for the heterolo...
متن کاملIn vitro Conversion of Vinyl to Formyl Groups in Naturally Occurring Chlorophylls
The chemical structural differences distinguishing chlorophylls in oxygenic photosynthetic organisms are either formyl substitution (chlorophyll b, d, and f) or the degree of unsaturation (8-vinyl chlorophyll a and b) of a side chain of the macrocycle compared with chlorophyll a. We conducted an investigation of the conversion of vinyl to formyl groups among naturally occurring chlorophylls. We...
متن کاملSpectral properties of bacteriophytochrome AM1_5894 in the chlorophyll d-containing cyanobacterium Acaryochloris marina
Acaryochloris marina, a unicellular oxygenic photosynthetic cyanobacterium, has uniquely adapted to far-red light-enriched environments using red-shifted chlorophyll d. To understand red-light use in Acaryochloris, the genome of this cyanobacterium was searched for red/far-red light photoreceptors from the phytochrome family, resulting in identification of a putative bacteriophytochrome AM1_589...
متن کاملReactive oxygen production induced by near-infrared radiation in three strains of the Chl d-containing cyanobacterium Acaryochloris marina
Cyanobacteria in the genus Acaryochloris have largely exchanged Chl a with Chl d, enabling them to harvest near-infrared radiation (NIR) for oxygenic photosynthesis, a biochemical pathway prone to generate reactive oxygen species (ROS). In this study, ROS production under different light conditions was quantified in three Acaryochloris strains (MBIC11017, HICR111A and the novel strain CRS) usin...
متن کامل